Genetic Regulatory Circuit Dynamics: Analysis and Synthesis

نویسنده

  • Joseph H Levine
چکیده

How can cells shape and utilize dynamic gene regulation to enable complex cellular behaviors? I study this question in natural and a synthetic context. The first project studies how a natural genetic network can imbue cells with a sense of ‘time’. It has long been known that environmental signals induce diverse cellular di↵erentiation programs. In certain systems, cells defer di↵erentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before di↵erentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable ‘polyphasic’ positive feedback, in which di↵erent parts of a feedback loop are active at di↵erent times. Polyphasic feedback can enable more accurate tuning vii of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a timer that operates over time scales much longer than a cell cycle. The second project proposes a method to rapidly generate and test complex genetic network dynamics in living cells. Existing microorganisms have evolved genetic circuitry to meet diverse challenges and maximize their survival and fitness. These challenges can be external pressures from the environment, or internal constraints imposed by an existing essential biophysical process. Furthermore, these challenges may be either static or dynamic in nature. While existing circuits have likely evolved to be ‘good enough’ to respond to historical challenges, it remains unclear if they can be improved upon, and whether they respond well to novel situations. Synthetic biology seeks to engineer organisms with complex novel phenotypes, both to harness these novel organisms for a function and to understand their underlying biology. Dynamic gene expression strategies may be necessary to meet dynamic internal and external challenges. Unfortunately, generating novel dynamic gene expression patterns with conventional genetic engineering remains a challenge. Here I propose and describe progress towards a computerized feedback control setup to enable the programming and rapid testing of dynamic gene regulatory patterns in living cells. Small sets of genes will be regulated optogenetically based on programmed control laws, and past and present cellular state. This setup will enable us to explore the functions and limits of engineered dynamic gene regulation, while hopefully, in the process, providing lessons about the underlying biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MOLECULAR ANALYSIS OF THE SULFUR REGULATORY CIRCUIT OF NEUROSPORA CRASSA

The sulfur regulatory circuit of the filamentous fungus, Neurospora crassa, consists of a set of unlinked structural genes which encode sulfur catabolic and two major regulatory genes which govern their expression. The cys-3 regulatory gene encode a transacting regulatory protein which activates the expression of cys-14 and ars, whereas the other regulatory genes Scon-l and Scon-2 appear to...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

A Compositional Approach to the Stochastic Dynamics of Gene Networks

We propose a compositional approach to the dynamics of gene regulatory networks based on the stochastic π-calculus, and develop a representation of gene network elements which can be used to build complex circuits in a transparent and efficient way. To demonstrate the power of the approach we apply it to several artificial networks, such as the repressilator and combinatorial gene circuits firs...

متن کامل

An Analysis of Self-Regulatory Learning Strategies in Secondary School Blended Learning Atmospheres: A Synthesis Research

This synthesis research has aimed to identify the features of blended learning environments which support self-regulatory learning strategies in high school students. The statistical population was derived from five foreign databases, consisting of 128 articles from 2017 to 2020. The data obtained were integrated using Sandelowski & Barroso's meta-synthesis method (2005). STROBE Checklist was u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012